Stein Fillable 3-manifolds Admit Positive Open Book Decompositions along Arbitrary Links

نویسنده

  • Masaharu Ishikawa
چکیده

It is known by A. Loi and R. Piergallini that a closed, oriented, smooth 3manifold is Stein fillable if and only if it has a positive open book decomposition. In the present paper we will show that for every link L in a Stein fillable 3-manifold there exists an additional knot L to L such that the link L ∪ L is the binding of a positive open book decomposition of the Stein fillable 3-manifold. To prove the assertion, we will use the divide, which is a generalization of real morsification theory of complex plane curve singularities, and 2-handle attachings along Legendrian curves.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strongly Fillable Contact Manifolds and J–holomorphic Foliations

We prove that every strong symplectic filling of a planar contact manifold admits a Lefschetz fibration over a disk that restricts to any given planar open book at the boundary. It follows that strongly fillable planar contact structures are also Stein fillable. Using similar methods, involving foliations by J–holomorphic curves, we construct a Lefschetz fibration over the annulus for any stron...

متن کامل

Strongly fillable contact 3–manifolds without Stein fillings

We use the Ozsváth–Szabó contact invariant to produce examples of strongly symplectically fillable contact 3–manifolds which are not Stein fillable. AMS Classification numbers Primary: 57R17 Secondary: 57R57

متن کامل

Compact Stein Surfaces with Boundary as Branched Covers of B

We prove that Stein surfaces with boundary coincide up to orientation preserving diffeomorphisms with simple branched coverings of B4 whose branch set is a positive braided surface. As a consequence, we have that a smooth oriented 3-manifold is Stein fillable iff it has a positive open-book decomposition.

متن کامل

Heegaard Floer Homologies and Contact Structures

Given a contact structure on a closed, oriented three-manifold Y , we describe an invariant which takes values in the three-manifold’s Floer homology ĤF (in the sense of [10]). This invariant vanishes for overtwisted contact structures and is non-zero for Stein fillable ones. The construction uses of Giroux’s interpretation of contact structures in terms of open book decompositions (see [4]), a...

متن کامل

Symplectic fillability of toric contact manifolds

According to Lerman, compact connected toric contact 3-manifolds with a non-free toric action whose moment cone spans an angle greater than π are overtwisted, thus non-fillable. In contrast, we show that all compact connected toric contact manifolds in dimension greater than three are weakly symplectically fillable and most of them are strongly symplectically fillable. The proof is based on the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004